Checks
Pure state
Tr(ρ2)=1Tr(ρ2)<1Tr(ρ2)=d1⇒pure⇒mixed⇒max. mixed
Hermitian
A†=A
Unitary
U†U=I
Entangled
State is entangled iff it cannot be written as
∣ψ⟩=∣ψ1⟩⊗∣ψ2⟩.
Tensor Product
Vectors
(ab)⊗(cd)=acadbcbd
Matrices
(A⊗B)(C⊗D)=(AC)⊗(BD)
Dirac & Completeness
∣a⟩=i∑ai∣vi⟩,⟨a∣=∣a⟩†,i∑∣vi⟩⟨vi∣=I
Complex Numbers / Euler
eiθ=cosθ+isinθ,cosθ=2eiθ+e−iθ,sinθ=2ieiθ−e−iθ
Modulus: ∣z∣2=zz∗.
if something is observable the eigenvalues must be real
Qubit States & Bloch Sphere
∣ψ(θ,ϕ)⟩=cos2θ∣0⟩+eiϕsin2θ∣1⟩
Bloch vector r=(sinθcosϕ,sinθsinϕ,cosθ),
ρ=21(I+r⋅σ).
Pauli Matrices & Spin-½
σx=(0110),σy=(0i−i0),σz=(100−1)
Si=2ℏσi,[Sx,Sy]=iℏSz(cyclic)
Spin length: S2=Sx2+Sy2+Sz2=43ℏ2.
Measurement (Born Rule)
Pure: P(aj)=∣⟨aj∣ψ⟩∣2
Mixed: P(aj)=Tr(ρPj) where Pj=∣aj⟩⟨aj∣.
Expectation: ⟨A⟩=Tr(ρA),
Variance (ΔA)2=⟨A2⟩−⟨A⟩2.
- Purity γ=Tr(ρ2) (see checks above).
- Partial trace: ρA=TrB(ρAB).
Uncertainty Principle
ΔAΔB≥21⟨[A,B]⟩
For spin: ΔSxΔSy≥2ℏ∣⟨Sz⟩∣.
Time Evolution
iℏdtd∣ψ(t)⟩=H∣ψ(t)⟩,∣ψ(t)⟩=e−iHt/ℏ∣ψ(0)⟩
Density matrix: ρ(t)=U(t)ρ(0)U†(t).
Bell States
∣Φ±⟩∣Ψ±⟩=21(∣00⟩±∣11⟩),=21(∣01⟩±∣10⟩)
50 : 50 Beam-Splitter (for photon path qubit)
UBS=21(111−1)
Quick Identities
- (AB)†=B†A†
- [A,B]=0⇒ common eigenbasis.
- Tr(A⊗B)=TrATrB
- Mod-squared amplitude: ∣⟨a∣ψ⟩∣2→ probability.